

Effect of EMBr onTransient Turbulent Flow in CC using DNS models and Ga-In-Sn Benchmark Measurements

R. Chaudhary, B.G. Thomas, P. Vanka

Department of Mechanical Science and Engineering University of Illinois at Urbana-Champaign

Acknowledgements

- Continuous Casting Consortium Members (ABB, Mittal, Baosteel, Tata Steel, Magnesita Refractories, Nucor Steel, Nippon Steel, POSTECH, POSCO, SSAB, ANSYS-Fluent)
- K. Timmel, G. Gerbeth, et. al., FZD Research, Dresden, Germany (measurements)
- Aaron Shinn and graduate students at Metals Processing Simulation Lab (GPU models).

University of Illinois at Urbana-Champaign

Objectives

- Model development and testing of CFD codes
 - Extended GPU based CFD code (CU-FLOW) for magnetohydrodynamic (MHD) formulations, turbulent kinetic energy and vorticity budget calculations
 - Direct numerical simulations (DNS) in MHD and non-MHD channel and square duct flows
 - Tested various RANS models (k-ε and Reynolds stress) with MHD effects in channel and square duct flows
- Application of models to understand turbulent flows and steel quality issues in continuous casting processes
 - Compare 6 different methods to quantify transient turbulent flows in the nozzle and mold of a realistic GaInSn model of a typical CC process

Metals Processing Simulation Lab

R. Chaudhary

3

 Investigate effect of electromagnetic braking (EMBr) on turbulent flows in a CC process using GaInSn model to help design better ruler brake systems

Rajneesh Chaudhary, C. Ji, BG Thomas, CCC, UIUC

Computational Models Evaluated (RANS)

- RANS (SKE and RKE):
 - Steady-state segregated solver
 - Semi-Implicit Pressure Linked Equations (SIMPLE) method for pressurevelocity coupling
 - 2nd order upwind scheme for convection terms
 - Unscaled residuals were reduced below 1.0x10⁻⁰⁴ to stagnant values.
 - Execution time: ~8 hrs with parallel FLUENT (6-cores parallel FLUENT on 2.66GHz Xeon 8MB RAM)
- Filtered URANS(unsteady filtered SKE):
 - Unsteady 2nd order implicit time update
 - Implicit Fractional Step Method (I-FSM) for pressure-velocity coupling
 - 2nd order upwind scheme for convection terms
 - Correction in eddy viscosity is implemented using user defined functions.
 - unscaled residuals decreased by 1000X each time step.
 - 31s simulation, (timestep, $\Delta t=0.004$ sec) after initial transient (~20s)
 - Execution time: ~100 hrs (3-cores)

Computational Models Evaluated (LES)

- LES (Fluent):
 - Unsteady 2nd order implicit time update
 - Implicit Fractional Step Method (I-FSM) for pressure-velocity coupling
 - 2nd order central differencing scheme for convection terms
 - unscaled residuals decreased by 1000X each time step.
 - 21.5s simulation, (timestep, $\Delta t=0.0002$ sec) after initial transient (~23s)
 - Execution time: ~67 days

• LES (CU-UIFLOW) GPU Code

- Unsteady 2nd order explicit time integration (Adams-Bashforth)
- Implicit Fractional Step Method (I-FSM) for pressure-velocity coupling
- 2nd order central differencing scheme for convection terms
- Geometric multigrid solver (incompressible MHD; explicit Lorentz source)
- Executes on Graphics Processing Unit (video card)
- ~20s simulation, (timestep, $\Delta t=0.0002$ sec) after initial transient (~20s)
- Execution time: ~14 days
- 5X less time on ~5X finer mesh (>25X faster than Fluent)

University of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • R. Chaudhary 7

Comparison of average velocity magnitude at nozzle mid-plane and jet characteristics

Properties	Steady SKE model	LES model (FLUENT)	Filtered URANS (SKE)
	Left port	Left port	Left port
Weighted average nozzle port velocity in x- direction(outward)(m/s)	0.816	0.71	0.577
Weighted average nozzle port velocity in y- direction(horizontal)(m/s)	0.073	0.108	0.0932
Weighted average nozzle port velocity in z- direction(downward)(m/s)	0.52	0.565	0.543
Weighted average nozzle port turbulent kinetic energy (m ² /s ²)	0.084	0.142	0.0847
Weighted average nozzle port turbulent kinetic energy dissipation rate (m ² /s ³)	15.5		15.8
Vertical jet angle (degree)	32.5	38.5	43.3
Horizontal jet angle (degree)	0	0	0
Horizontal spread (half) angle (degree)	5.1	8.6	9.2
Average jet speed (m/s)	0.97	0.91	0.8
Back-flow zone (%)	34.0	25.1	17.6

University of Illinois at Urbana-Champaign •

Frequency of turbulent velocity variations is higher near SEN port and jet.

Note: conducting steel shell is not in CFD or experiment: differs from steel caster

nuous asting Consortium

Time-averaged flow patterns

Comparison of velocity histories at 3 points in jet (with 121-mm EMBr)

Measured (with UDV) and simulated (LES-GPU) (horizontal velocity at mold mid-plane)

 High frequency turbulent variations in center of jet (P-4)

· Low frequency variations in edges of jet (P-3, P-5)

Metals Processing Simulation Lab

Resolved Reynolds stresses and suppression of nozzle bottom swirl and its alternation

(b) 92-mm EMBr (c) 121-mm EMBr (d) Double ruler

POD Analysis: Modal coefficients, singular values, energy fraction and rank approximation

Significant proper orthogonal modes

Proper orthogonal decomposition (POD) of instantaneous velocity fluctuation data using single value decomposition (SVD) done with a MATLAB code.

No-EMBr: the most significant modes involve swirl inside the nozzle

With-EMBr : suppresses v' components and shows strong modes in upper recirculation zone.

Flow starts laminarizing in lower and upper rolls: dominance of low frequency fluctuations.

For poorly-designed EMBr location, a small right-left asymmetry in magnetic field causes huge right-left asymmetry in turbulent flow due to the dominance of large scales.

Comparison of Measured & Simulated Transient Flow with EMBr

avi

Effect of single/double ruler type EMBr on turbulent flow in continuous casting (velocity magnitude and magnetic field)

